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CPI: A Recipe for Improving Applicable Properties
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. 1
We have recently shown that the discogen HAT&forms g

mesogenic binary compounds with the large-core polynuclear
aromatics2a and 2b (Scheme 1}. These compounds show
isothermal phase transitions and are formed with an exact 1:1
stoichiometry being virtually immiscible with the individual
components (an excess b, 2a, or 2b). The 1:1 compounds
give columnar mesophases that exist over a greater temperature3a
range and that are more ordered than those formethlnyn its

own. In the columnar phase it is assumed that the large and small3b
ring components are stacked alternately within the columns.
Despite the fact that there is a strong interaction betwleeand
2a—b, there is no charge transfer, and the electronic structures
of the two components are not perturbed in any way. Their 44
formation can be rationalized, however, using a model in which
atom-centered van der Waals and multipolar terms are summed
between the two components: a complimentary polytopic interac-
tion (CP1)}~2 The strong interaction between the two components
laand2a—b leads to greater stability and order of the columnar
structures. As previously reported, this leads to wider mesophase
range$ and higher charge-carrier mobilitié&two properties that
are critical in many of the proposed applications of discotic liquid

1h

3c

ba

Cr 100 (23.8)
Colp 176 (32) |

Col, 1361

Cr 43.8 (45.8)
Coh123.1 (8.0)1

Coh121.2 (13)1
Cra2.71

Cra2.11
Cr71.01

Crs53|

Col 84.0 (3.1) |
Col, 124.0(6.6) |
none

Cr43.9 (14)

Col, 72.1 (1.8) |

Cr 38-48 (64)
Coh, 85.7 (1.2) |

none

none

Coh 240 (33) |
Col 225.2 (27.0) |

Crio71
Col,232.7(30.7) |

Col225.6 (36) |
Coh220.4 (26) |

C04237.0 (32) |

Co}207.8 (17) |

Col200.2 (19.9) |
Col190.9 (2.4) |

Cr67.0 (1.0)
Col,194.8 (14.8) ¥

glass 90
Col, 245.3 (26.6) |

Col,213.9 (15.1) |

Cr52 (15.2)
Col, 223 (15.7) |

glass 104
Col 228.8 (12.2) |

Col243.1 (12.2) |

Col 155 (19) |
Col 131.4 (13.7)

Cr1001

Cr40.1 (1.09)
Col,137.0 (16.7)

Col 129.3 (16) |

Cr70.2 (2)
Col, 107.6 (7) |

glass 84.5
Col, 139.3 (12) |

Cr49.7 (7)
Col, 67.2 (5)
Co,92.3 (3) |

Col51.7 (15.7) |

Cr48.7 (3.1)
Col,100.0 (2.4) B

glass 57.2
Col, 128.4 (9.2) |

Col, 155.7 (2.5) |
Col 137.5 (8.85) |

Cr46.1 (11.29)
Col 141.0 (6.6) |

glass 104
Col 127.1 (3.66) |

Cr101 (0.1)
Col 136.9 (-4.4) |

crystals®” In this paper we show that the improvements are not
limited to the simple hexa-ethers of triphenylene suchadut

with both 2a and2b.2 The compound4f—1h were synthesized

that the complimentary disk&a—b can stabilize or even induce  \ith the idea that their liquid crystal properties could be modulated
columnar mesophases for a very wide range of triphenylene through the functional redox-active side-chain substitéemit
derivatives. progress had been frustrated since the individual compounds are
As shown in Table 1, improvements in the clearing temperature nonmesogenic. Adding the appropriate “complement” solves the
and mesophase range are achieved with the simple 2,3,6,7,10,problem. X-ray diffraction experiments show that the mesophases
11-hexaalkoxytriphenylenes such &a and theo-fluorinated formed betweer2a or 2b with both 1f and 1g have the normal
derivativesld—e but not with the derivative bearing the bulky hexagonal columnar structure, and we presume that the side chain
o-nitro-substituentc). This is consistent with a recent theoretical substituents are accommodated in the disordered region between
prediction (using an exteneded electron distribution or XED).  the columns? The discoidal amphiphile TP6EO2MLf)*® gives
More importantly, for triphenylene derivatives suchlds 1f— lyotropic but not thermotropic mesophases. However, the 1:1
1g that are not in themselves mesogenic, a mesophase can bg€ompounds withla and1b form columnar (hexagonal) thermo-
induced. The short-chain hexaalkoxytriphenylene HATB) (s tropic phases.

not itself mesogenic but forms stable 1:1 mesogenic compounds Whereas with some applications polymeric discotic liquid
crystals are desirable, their great disadvantage is that they are
almost impossible to align using surface interactitrgypically,
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Scheme 1.Molecules Used in This Investigation
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and 2a—b not only have enhanced mesophase ranges but also
are relatively easy to align on an untreated glass surface albeit in
a planar manner (as shown in Figure 1). Block copolymers in
which one block is a columnar discotic liquid crystal are of special
interest because of the interplay between the liquid crystal
properties and tendency to undergo microphase separation. The
polymers4!® give easy microphase separation, and although there
are some advantages in employing the 1:1 mixtures Réthb

this is more clearly seen in the side-chain diblock copolymers
5a—b. Here, because of the high glass transition of the polystyrene
backbone, microphase separation is difficult to achi€gow-

ever, in the mixtures witt2a—b, there is no difficulty.

Hence, exploitation of CPIs can lead to enhanced mesophase
ranges, induced mesophase behavior, improved alignment proper-
ties, induced microphase separation in block copolymers, and
improved charge carrier mobiliti€s. The question remains
whether this is peculiar to mixtures dfand?2 or is a phenomenon
that can be built on as a more general principle of supramolecular

.

Figure 1. Optical texture of the 1:1 compound 8 and2b as it appears
when viewed through crossed polarizing filters (magnificatiadt00, T
= 100°C). As the preparation is cooled from the melt into the(blase,
large domains with a planar alignment of the director (nucleating from a assembly.
central disclination) are observed. Bulk planar alignment can be achieved

by annealing or by a combination of shearing and annealing JA003443B

when thin films of polymers such &-5 are cooled from the .
. . - : (17) See for example ref 16, Figure 1.
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